Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70.791
Filtrar
1.
JSLS ; 28(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562948

RESUMO

Sodium-glucose cotransporters (SGLT) and glucose transporters (GLUT) have been shown to influence diabetes management by modulating glucose uptake by the intestine. Therefore, alterations in gastrointestinal anatomy during bariatric surgery can change SGLT and GLUT receptor activity. These changes offer an additional mechanism for weight loss and may explain the differential impact of the various bariatric surgical procedures. This review examines the current literature on SGLT and GLUT receptors and their effects on weight loss through genetic studies, pharmacologic inhibition, and how SGLT/GLUT receptors impact surgical physiologic modulation. A better understanding of Type I sodium-glucose cotransport receptors (SGLT-1), GLUT-2, and GLUT-5 could provide insight for improved procedures and allow us to determine the best method to tailor operations to a patient's individual needs.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus , Receptores de Superfície Celular , Humanos , Glucose , Sódio , Transportador 1 de Glucose-Sódio/genética , Redução de Peso
2.
Sci Transl Med ; 16(741): eadj9052, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569016

RESUMO

Microglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-ß (Aß) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD. Using mice that accumulate Aß and carry a transgene encompassing a portion of the LILR region that includes LILRB4, we corroborated abundant LILRB4 expression in microglia wrapping around Aß plaques. Systemic treatment of these mice with an anti-human LILRB4 monoclonal antibody (mAb) reduced Aß load, mitigated some Aß-related behavioral abnormalities, enhanced microglia activity, and attenuated expression of interferon-induced genes. In vitro binding experiments established that human LILRB4 binds both human and mouse ApoE and that anti-human LILRB4 mAb blocks such interaction. In silico modeling, biochemical, and mutagenesis analyses identified a loop between the two extracellular Ig domains of LILRB4 required for interaction with mouse ApoE and further indicated that anti-LILRB4 mAb may block LILRB4-mApoE by directly binding this loop. Thus, targeting LILRB4 may be a potential therapeutic avenue for AD.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Camundongos , Animais , Microglia/metabolismo , Anticorpos/metabolismo , Receptores de Superfície Celular/metabolismo , Amiloide/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E , Leucócitos/metabolismo , Camundongos Transgênicos , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
3.
Physiol Behav ; 279: 114543, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565330

RESUMO

BACKGROUND: Insufficient sleep adversely affects energy homeostasis by decreasing leptin levels. The underlying physiological mechanisms; however, remain unclear. Circulating leptin is well described to be regulated by its soluble receptor (sOB-R). Intriguingly, the impact of short sleep duration on sOB-R levels has never been characterized. AIM: In this study, we investigated, for the first time, the variation of sOB-R levels and its temporal relationship with circulating leptin upon acute sleep restriction. METHODS: Five adult females were maintained on an 8-hour sleep schedule (bedtime at 00:00) for 1 week before restricting their sleep to 4.5 h (bedtime at 03:30) on 2 consecutive nights. Balanced meals were scheduled to specific hours and sleep was objectively measured. Four-hour blood samples were regularly collected during waking hours between 08:00 and 00:00. RESULTS: Sleep restriction resulted in lower leptin (20.9 ± 1.7 vs 25.7 ± 1.7 ng/ml) and higher sOB-R concentrations (24.4 ± 1.2 vs 19.8 ± 1.6 ng/ml). Neither the discordant temporal relationship nor the pattern of leptin and sOB-R were altered in response to sleep restriction. CONCLUSION: Our results suggest that sleep restriction may modulate circulating leptin levels and possibly metabolism via upregulating its soluble receptor. This observation may have valuable therapeutic implications when considering sOB-R as a potential target during the management of metabolic disturbances.


Assuntos
Leptina , Receptores para Leptina , Humanos , Feminino , Projetos Piloto , Receptores de Superfície Celular/metabolismo , Proteínas de Transporte , Sono
4.
Cells ; 13(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38607073

RESUMO

Glioblastoma is a highly aggressive disease with poor survival outcomes. An emerging body of literature links the role of the renin-angiotensin system (RAS), well-known for its function in the cardiovascular system, to the progression of cancers. We studied the expression of RAS-related genes (ATP6AP2, AGTR1, AGTR2, ACE, AGT, and REN) in The Cancer Genome Atlas (TCGA) glioblastoma cohort, their relationship to patient survival, and association with tumour microenvironment pathways. The expression of RAS genes was then examined in 12 patient-derived glioblastoma cell lines treated with chemoradiation. In cases of glioblastoma within the TCGA, ATP6AP2, AGTR1, ACE, and AGT had consistent expressions across samples, while AGTR2 and REN were lowly expressed. High expression of AGTR1 was independently associated with lower progression-free survival (PFS) (p = 0.01) and had a non-significant trend for overall survival (OS) after multivariate analysis (p = 0.095). The combined expression of RAS receptors (ATP6AP2, AGTR1, and AGTR2) was positively associated with gene pathways involved in hypoxia, microvasculature, stem cell plasticity, and the molecular characterisation of glioblastoma subtypes. In patient-derived glioblastoma cell lines, ATP6AP2 and AGTR1 were upregulated after chemoradiotherapy and correlated with an increase in HIF1A expression. This data suggests the RAS is correlated with changes in the tumour microenvironment and associated with glioblastoma survival outcomes.


Assuntos
Glioblastoma , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/genética , Regulação para Cima/genética , Glioblastoma/genética , Microambiente Tumoral , Receptores de Superfície Celular/metabolismo , Receptor de Pró-Renina
5.
J Med Chem ; 67(8): 6624-6637, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38588467

RESUMO

The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.


Assuntos
Desenho de Fármacos , Elastina , Fibrose Pulmonar , Receptores de Superfície Celular , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Animais , Camundongos , Elastina/química , Elastina/metabolismo , Humanos , Metaloproteinase 12 da Matriz/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/síntese química , Camundongos Endogâmicos C57BL , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino
7.
Sci Rep ; 14(1): 9321, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653789

RESUMO

ANTXR1 is one of two cell surface receptors mediating the uptake of the anthrax toxin into cells. Despite substantial research on its role in anthrax poisoning and a proposed function as a collagen receptor, ANTXR1's physiological functions remain largely undefined. Pathogenic variants in ANTXR1 lead to the rare GAPO syndrome, named for its four primary features: Growth retardation, Alopecia, Pseudoanodontia, and Optic atrophy. The disease is also associated with a complex range of other phenotypes impacting the cardiovascular, skeletal, pulmonary and nervous systems. Aberrant accumulation of extracellular matrix components and fibrosis are considered to be crucial components in the pathogenesis of GAPO syndrome, contributing to the shortened life expectancy of affected individuals. Nonetheless, the specific mechanisms connecting ANTXR1 deficiency to the clinical manifestations of GAPO syndrome are largely unexplored. In this study, we present evidence that ANTXR1 deficiency initiates a senescent phenotype in human fibroblasts, correlating with defects in nuclear architecture and actin dynamics. We provide novel insights into ANTXR1's physiological functions and propose GAPO syndrome to be reconsidered as a progeroid disorder highlighting an unexpected role for an integrin-like extracellular matrix receptor in human aging.


Assuntos
Alopecia , Anodontia , Senescência Celular , Fibroblastos , Transtornos do Crescimento , Proteínas dos Microfilamentos , Humanos , Fibroblastos/metabolismo , Senescência Celular/genética , Alopecia/metabolismo , Alopecia/patologia , Alopecia/genética , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/deficiência , Atrofias Ópticas Hereditárias/genética , Atrofias Ópticas Hereditárias/metabolismo , Actinas/metabolismo , Progéria/genética , Progéria/patologia , Progéria/metabolismo
8.
Mol Genet Genomic Med ; 12(3): e2353, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488435

RESUMO

BACKGROUND: Although proteinuria is long recognized as an independent risk factor for progressive chronic kidney diseases, not all forms of proteinuria are detrimental to kidney function, one of which is isolated proteinuria caused by cubilin (CUBN)-specific mutations. CUBN encodes an endocytic receptor, initially found to be responsible for the Imerslund-Gräsbeck syndrome (IGS; OMIM #261100) characterized by a combined phenotype of megaloblastic anemia and proteinuria. METHODS: After analyzing their clinical and pathological characterizations, next-generation sequencing for renal disease genes or whole-exome sequencing (WES) was performed on four patients with non-progressive isolated proteinuria. CUBN biallelic pathogenic variants were identified and further analyzed by cDNA-PCR sequencing, immunohistochemistry, minigene assay, and multiple in silico prediction tools, including 3D protein modeling. RESULTS: Here, we present four patients with isolated proteinuria caused by CUBN C-terminal biallelic pathogenic variants, all of which showed no typical IGS symptoms, such as anemia and vitamin B12 deficiency. Their urine protein levels fluctuated between +~++ and estimated glomerular filtration rate (eGFR) were normal or slightly higher. Mild mesangial hypercellularity was found in three children's renal biopsies. A homozygous splice-site variant of CUBN (c.6821+3 (IVS44) A>G) was proven to result in the exon 44 skipping and premature translation termination by cDNA sequencing and immunohistochemistry. Compound heterozygous mutations were identified among the other three children, including another novel splice-site variant (c.10764+1 (IVS66) G>A) causing the retention of first 4 nucleotides in intron 66 by minigene assay, two unreported missense mutations (c.4907G>A (p.R1636Q); c. 9095 A>G (p.Y3032C)), and two reported missense mutations in China (c.8938G>A (p.D2980N); c. 9287T>C (p.L3096P)), locating behind the vitamin B12-binding domain, affecting CUB11, CUB16, CUB22, CUB23, and CUB27 domains, respectively. CONCLUSION: These results demonstrate that above CUBN mutations may cause non-progressive and isolated proteinuria, expanding the variant spectrum of CUBN and benefiting our understanding of proteinuria and renal function.


Assuntos
Proteinúria , Receptores de Superfície Celular , Criança , Humanos , DNA Complementar , Proteinúria/genética , Proteinúria/patologia , Receptores de Superfície Celular/genética
9.
J Alzheimers Dis ; 98(2): 601-618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427484

RESUMO

Background: Microglial dysfunction plays a causative role in Alzheimer's disease (AD) pathogenesis. Here we focus on a germline insertion/deletion variant mapping SIRPß1, a surface receptor that triggers amyloid-ß(Aß) phagocytosis via TYROBP. Objective: To analyze the impact of this copy-number variant in SIRPß1 expression and how it affects AD molecular etiology. Methods: Copy-number variant proxy rs2209313 was evaluated in GERALD and GR@ACE longitudinal series. Hippocampal specimens of genotyped AD patients were also examined. SIRPß1 isoform-specific phagocytosis assays were performed in HEK393T cells. Results: The insertion alters the SIRPß1 protein isoform landscape compromising its ability to bind oligomeric Aß and its affinity for TYROBP. SIRPß1 Dup/Dup patients with mild cognitive impairment show an increased cerebrospinal fluid t-Tau/Aß ratio (p = 0.018) and a higher risk to develop AD (OR = 1.678, p = 0.018). MRIs showed that Dup/Dup patients exhibited a worse initial response to AD. At the moment of diagnosis, all patients showed equivalent Mini-Mental State Examination scores. However, AD patients with the duplication had less hippocampal degeneration (p < 0.001) and fewer white matter hyperintensities. In contrast, longitudinal studies indicate that patients bearing the duplication allele show a slower cognitive decline (p = 0.013). Transcriptional analysis also shows that the SIRPß1 duplication allele correlates with higher TREM2 expression and an increased microglial activation. Conclusions: The SIRPß1 internal duplication has opposite effects over MCI-to-Dementia conversion risk and AD progression, affecting microglial response to Aß. Given the pharmacological approaches focused on the TREM2-TYROBP axis, we believe that SIRPß1 structural variant might be considered as a potential modulator of this causative pathway.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Receptores de Superfície Celular , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Microglia/metabolismo , Fagocitose , Receptores de Superfície Celular/metabolismo
10.
Biomolecules ; 14(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38540680

RESUMO

Growth-factor-receptor-binding protein 2 (GRB2) is a non-enzymatic adaptor protein that plays a pivotal role in precisely regulated signaling cascades from cell surface receptors to cellular responses, including signaling transduction and gene expression. GRB2 binds to numerous target molecules, thereby modulating a complex cell signaling network with diverse functions. The structural characteristics of GRB2 are essential for its functionality, as its multiple domains and interaction mechanisms underpin its role in cellular biology. The typical signaling pathway involving GRB2 is initiated by the ligand stimulation to its receptor tyrosine kinases (RTKs). The activation of RTKs leads to the recruitment of GRB2 through its SH2 domain to the phosphorylated tyrosine residues on the receptor. GRB2, in turn, binds to the Son of Sevenless (SOS) protein through its SH3 domain. This binding facilitates the activation of Ras, a small GTPase, which triggers a cascade of downstream signaling events, ultimately leading to cell proliferation, survival, and differentiation. Further research and exploration into the structure and function of GRB2 hold great potential for providing novel insights and strategies to enhance medical approaches for related diseases. In this review, we provide an outline of the proteins that engage with domains of GRB2, along with the function of different GRB2 domains in governing cellular signaling pathways. This furnishes essential points of current studies for the forthcoming advancement of therapeutic medications aimed at GRB2.


Assuntos
Receptores Proteína Tirosina Quinases , Transdução de Sinais , Proteína Adaptadora GRB2/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Tirosina/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Son Of Sevenless , Ligação Proteica , Fosforilação
11.
Circ Res ; 134(7): 931-949, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547250

RESUMO

The ECM (extracellular matrix) is a major component of the vascular microenvironment that modulates vascular homeostasis. ECM proteins include collagens, elastin, noncollagen glycoproteins, and proteoglycans/glycosaminoglycans. ECM proteins form complex matrix structures, such as the basal lamina and collagen and elastin fibers, through direct interactions or lysyl oxidase-mediated cross-linking. Moreover, ECM proteins directly interact with cell surface receptors or extracellular secreted molecules, exerting matricellular and matricrine modulation, respectively. In addition, extracellular proteases degrade or cleave matrix proteins, thereby contributing to ECM turnover. These interactions constitute the ECM interactome network, which is essential for maintaining vascular homeostasis and preventing pathological vascular remodeling. The current review mainly focuses on endogenous matrix proteins in blood vessels and discusses the interaction of these matrix proteins with other ECM proteins, cell surface receptors, cytokines, complement and coagulation factors, and their potential roles in maintaining vascular homeostasis and preventing pathological remodeling.


Assuntos
Proteínas da Matriz Extracelular , Matriz Extracelular , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Colágeno/metabolismo , Elastina/metabolismo , Homeostase , Receptores de Superfície Celular/metabolismo
12.
Cell Stress Chaperones ; 29(2): 227-234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453000

RESUMO

Dendritic cells, macrophages, neutrophils, and other antigen-presenting cells express various C-type lectin receptors that function to recognize the glycans associated with pathogens. The dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) binds various pathogens such as HIV glycoprotein 120, the Ebola glycoprotein, hemagglutinin, and the dengue virus glycoprotein in addition to the SARS-CoV-2 spike protein, and also triggers antigen-presenting cell endocytosis and immune escape from systemic infections. Many studies on the binding of SARS-CoV-2 spike protein with glycans have been published, but the underlying mechanism by which intracellular signaling occurs remains unclear. In this study, we report that the S1 spike protein of SARS-CoV-2 induces the phosphorylation of extracellular signal-regulated kinases (ERKs) in THP-1 cells, a DC-SIGN-expressing human monocytic leukemic cell line. On the other hand, the phosphorylation level of NF-κB remained unchanged under the same conditions. These data suggest that the major cell signaling pathway regulated by the S1 spike protein is the ERK pathway, which is superior to the NF-κB pathway in these DC-SIGN-expressing THP-1 cells and may contribute to immune hyperactivation in SARS-CoV-2 infections. Additionally, several glycans such as mannans, mannosylated bovine serum albumin, the serum amyloid beta protein, and intracellular adhesion molecule 3 suppressed ERK phosphorylation, suggesting that these molecules are target molecules for SARS-CoV-2 infection by suppressing immune hyperactivation that occurs in the ERK signaling pathway.


Assuntos
COVID-19 , Receptores de Superfície Celular , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , NF-kappa B/metabolismo , SARS-CoV-2/metabolismo , Sistema de Sinalização das MAP Quinases , Células THP-1 , Peptídeos beta-Amiloides , COVID-19/metabolismo , Moléculas de Adesão Celular/metabolismo , Transdução de Sinais , Lectinas Tipo C/metabolismo , Polissacarídeos/metabolismo , Células Dendríticas/metabolismo
13.
Methods Enzymol ; 694: 303-320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38492956

RESUMO

Spatiotemporal interrogation of signal transduction at the single-cell level is necessary to understand how extracellular cues are converted into biochemical signals and differentially regulate cellular responses. Using single-cell perturbation tools such as optogenetics, specific biochemical cues can be delivered to selective molecules or cells at any desired location and time. By measuring cellular responses to provided perturbations, investigators have decoded and deconstructed the working mechanisms of a variety of neuroelectric and biochemical signaling processes. However, analogous methods for deciphering the working mechanisms of mechanosensitive signaling by regulating mechanical inputs to cell receptors have remained elusive. To address this unmet need, we have recently developed a nanotechnology-based single-cell and single-molecule perturbation tool, termed mechanogenetics, that enables precise spatial and mechanical control over genetically encoded cell-surface receptors in live cells. This tool combines a magnetofluorescent nanoparticle (MFN) actuator, which provides precise spatial and mechanical signals to receptors via target-specific one-to-one interaction, with a micromagnetic tweezers that remotely controls the force exerted on a single nanoparticle. This chapter provides comprehensive experimental protocols of mechanogenetics consisting of four stages: (i) chemical synthesis of MFNs, (ii) bio-conjugation and purification of monovalent MFNs, (iii) establishment of cells with genetically encoded mechanosensitive proteins, and (iv) modular targeting and control of cell-surface receptors in live cells. The entire procedure takes up to 1 week. This mechanogenetic tool can be generalized to study many outstanding questions related to the dynamics of cell signaling and transcriptional control, including the mechanism of mechanically activated receptor.


Assuntos
Nanopartículas , Optogenética , Optogenética/métodos , Nanopartículas/química , Transdução de Sinais , Receptores de Superfície Celular/metabolismo , Fenômenos Magnéticos
14.
Oncoimmunology ; 13(1): 2327692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516269

RESUMO

Regulatory T (Treg) cells are critical in shaping an immunosuppressive microenvironment to favor tumor progression and resistance to therapies. However, the heterogeneity and function of Treg cells in esophageal squamous cell carcinoma (ESCC) remain underexplored. We identified CD177 as a tumor-infiltrating Treg cell marker in ESCC. Interestingly, expression levels of CD177 and PD-1 were mutually exclusive in tumor Treg cells. CD177+ Treg cells expressed high levels of IL35, in association with CD8+ T cell exhaustion, whereas PD-1+ Treg cells expressed high levels of IL10. Pan-cancer analysis revealed that CD177+ Treg cells display increased clonal expansion compared to PD-1+ and double-negative (DN) Treg cells, and CD177+ and PD-1+ Treg cells develop from the same DN Treg cell origin. Importantly, we found CD177+ Treg cell infiltration to be associated with poor overall survival and poor response to anti-PD-1 immunotherapy plus chemotherapy in ESCC patients. Finally, we found that lymphatic endothelial cells are associated with CD177+ Treg cell accumulation in ESCC tumors, which are also decreased after anti-PD-1 immunotherapy plus chemotherapy. Our work identifies CD177+ Treg cell as a tumor-specific Treg cell subset and highlights their potential value as a prognostic marker of survival and response to immunotherapy and a therapeutic target in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Linfócitos T Reguladores/metabolismo , Neoplasias Esofágicas/terapia , Receptor de Morte Celular Programada 1 , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Prognóstico , Biomarcadores Tumorais , Microambiente Tumoral , Isoantígenos , Receptores de Superfície Celular , Proteínas Ligadas por GPI
15.
J Plant Physiol ; 295: 154190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460400

RESUMO

PTMs (Post-Translational Modifications) of proteins facilitate rapid modulation of protein function in response to various environmental stimuli. The EIN2 (Ethylene Insensitive 2) protein is a core regulatory of the ethylene signaling pathway. Recent findings have demonstrated that PTMs, including protein phosphorylation, ubiquitination, and glycosylation, govern EIN2 trafficking, subcellular localization, stability, and physiological roles. The cognition of multiple PTMs in EIN2 underscores the stringent regulation of protein. Consequently, a thorough review of the regulatory role of PTMs in EIN2 functions will improve our profound comprehension of the regulation mechanism and various physiological processes of EIN2-mediated signaling pathways. This review discusses the evolution, functions, structure and characteristics of EIN2 protein in plants. Additionally, this review sheds light on the progress of protein ubiquitination, phosphorylation, O-Glycosylation in the regulation of EIN2 functions, and the unresolved questions and future perspectives.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Processamento de Proteína Pós-Traducional , Fosforilação , Receptores de Superfície Celular/genética
16.
PLoS One ; 19(3): e0300282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483883

RESUMO

Recent transcriptomic studies identified Gucy2d (encoding guanylate cyclase D) as a highly enriched gene within inhibitory dynorphin interneurons in the mouse spinal dorsal horn. To facilitate investigations into the role of the Gucy2d+ population in somatosensation, Gucy2d-cre transgenic mice were created to permit chemogenetic or optogenetic manipulation of this subset of spinal neurons. Gucy2d-cre mice created via CRISPR/Cas9 genomic knock-in were bred to mice expressing a cre-dependent reporter (either tdTomato or Sun1.GFP fusion protein), and the resulting offspring were characterized. Surprisingly, a much wider population of spinal neurons was labeled by cre-dependent reporter expression than previous mRNA-based studies would suggest. Although the cre-dependent reporter expression faithfully labeled ~75% of cells expressing Gucy2d mRNA in the adult dorsal horn, it also labeled a substantial number of additional inhibitory neurons in which no Gucy2d or Pdyn mRNA was detected. Moreover, cre-dependent reporter was also expressed in various regions of the brain, including the spinal trigeminal nucleus, cerebellum, thalamus, somatosensory cortex, and anterior cingulate cortex. Injection of AAV-CAG-FLEX-tdTomato viral vector into adult Gucy2d-cre mice produced a similar pattern of cre-dependent reporter expression in the spinal cord and brain, which excludes the possibility that the unexpected reporter-labeling of cells in the deep dorsal horn and brain was due to transient Gucy2d expression during early stages of development. Collectively, these results suggest that Gucy2d is expressed in a wider population of cells than previously thought, albeit at levels low enough to avoid detection with commonly used mRNA-based assays. Therefore, it is unlikely that these Gucy2d-cre mice will permit selective manipulation of inhibitory signaling mediated by spinal dynorphin interneurons, but this novel cre driver line may nevertheless be useful to target a broader population of inhibitory spinal dorsal horn neurons.


Assuntos
Dinorfinas , 60598 , Corno Dorsal da Medula Espinal , Camundongos , Animais , Medula Espinal/metabolismo , Camundongos Transgênicos , Interneurônios/metabolismo , Células do Corno Posterior/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Guanilato Ciclase/metabolismo , Receptores de Superfície Celular/metabolismo
17.
Methods Enzymol ; 694: 321-354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38492957

RESUMO

The chapter provides an overview of the applications of magnetic tweezers in living cells. It discusses the advantages and disadvantages of magnetic tweezers technology with a focus on individual magnetic tweezers configurations, such as electromagnetic tweezers. Solutions to the disadvantages identified are also outlined. The specific role of magnetic tweezers in the field of mechanobiology, such as mechanosensitivity, mechano-allostery and mechanotransduction are also emphasized. The specific usage of magnetic tweezers in mechanically probing cells via specific cell surface receptors, such as mechanosensitive channels is discussed and why mechanical probing has revealed the opening and closing of the channels. Finally, the future direction of magnetic tweezers is presented.


Assuntos
Magnetismo , Mecanotransdução Celular , Fenômenos Magnéticos , Mecanotransdução Celular/fisiologia , Receptores de Superfície Celular
18.
Hum Genet ; 143(3): 311-329, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459354

RESUMO

Identification of genes associated with nonsyndromic hearing loss is a crucial endeavor given the substantial number of individuals who remain without a diagnosis after even the most advanced genetic testing. PKHD1L1 was established as necessary for the formation of the cochlear hair-cell stereociliary coat and causes hearing loss in mice and zebrafish when mutated. We sought to determine if biallelic variants in PKHD1L1 also cause hearing loss in humans. Exome sequencing was performed on DNA of four families segregating autosomal recessive nonsyndromic sensorineural hearing loss. Compound heterozygous p.[(Gly129Ser)];p.[(Gly1314Val)] and p.[(Gly605Arg)];p[(Leu2818TyrfsTer5)], homozygous missense p.(His2479Gln) and nonsense p.(Arg3381Ter) variants were identified in PKHD1L1 that were predicted to be damaging using in silico pathogenicity prediction methods. In vitro functional analysis of two missense variants was performed using purified recombinant PKHD1L1 protein fragments. We then evaluated protein thermodynamic stability with and without the missense variants found in one of the families and performed a minigene splicing assay for another variant. In silico molecular modeling using AlphaFold2 and protein sequence alignment analysis were carried out to further explore potential variant effects on structure. In vitro functional assessment indicated that both engineered PKHD1L1 p.(Gly129Ser) and p.(Gly1314Val) mutant constructs significantly reduced the folding and structural stabilities of the expressed protein fragments, providing further evidence to support pathogenicity of these variants. Minigene assay of the c.1813G>A p.(Gly605Arg) variant, located at the boundary of exon 17, revealed exon skipping leading to an in-frame deletion of 48 amino acids. In silico molecular modeling exposed key structural features that might suggest PKHD1L1 protein destabilization. Multiple lines of evidence collectively associate PKHD1L1 with nonsyndromic mild-moderate to severe sensorineural hearing loss. PKHD1L1 testing in individuals with mild-moderate hearing loss may identify further affected families.


Assuntos
Mutação de Sentido Incorreto , Linhagem , Estereocílios , Humanos , Feminino , Masculino , Estereocílios/metabolismo , Estereocílios/patologia , Estereocílios/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Receptores de Superfície Celular/genética , Sequenciamento do Exoma , Genes Recessivos , Surdez/genética , Animais , Modelos Moleculares
19.
Pediatr Blood Cancer ; 71(6): e30945, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38462769

RESUMO

Consistent with studies showing a high prevalence of the Duffy null phenotype among healthy Black Americans, this retrospective study found that Duffy null was present in >75% of a young and contemporary cohort of children with sickle cell disease (SCD) in the United States. Despite the potential for this phenotype to impact absolute neutrophil counts, hydroxyurea (HU) dosing, and outcomes, it was not associated with being prescribed a lower HU dose or having increased acute SCD visits early in the HU treatment course. Future studies are needed to confirm these findings in older children with SCD.


Assuntos
Anemia Falciforme , Antidrepanocíticos , Sistema do Grupo Sanguíneo Duffy , Hidroxiureia , Humanos , Hidroxiureia/uso terapêutico , Hidroxiureia/administração & dosagem , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/epidemiologia , Masculino , Feminino , Estudos Retrospectivos , Pré-Escolar , Estados Unidos/epidemiologia , Criança , Sistema do Grupo Sanguíneo Duffy/genética , Prevalência , Antidrepanocíticos/uso terapêutico , Lactente , Receptores de Superfície Celular/genética , Adolescente
20.
Microb Pathog ; 190: 106610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484920

RESUMO

Jorge Lobo's disease (JLD) and lepromatous leprosy (LL) share several clinical, histological and immunological features, especially a deficiency in the cellular immune response. Macrophages participate in innate and adaptive inflammatory immune responses, as well as in tissue regeneration and repair. Macrophage function deficiency results in maintenance of diseases. M1 macrophages produce pro-inflammatory mediators and M2 produce anti-inflammatory cytokines. To better understand JLD and LL pathogenesis, we studied the immunophenotype profile of macrophage subtypes in 52 JLD skin lesions, in comparison with 16 LL samples, using a panmacrophage (CD68) antibody and selective immunohistochemical markers for M1 (iNOS) and M2 (CD163, CD204) responses, HAM56 (resident/fixed macrophage) and MAC 387 (recently infiltrating macrophage) antibodies. We found no differences between the groups regarding the density of the CD163, CD204, MAC387+ immunostained cells, including iNOS, considered a M1 marker. But HAM56+ cell density was higher in LL samples. By comparing the M2 and M1 immunomarkers in each disease separately, some other differences were found. Our results reinforce a higher M2 response in JLD and LL patients, depicting predominant production of anti-inflammatory cytokines, but also some distinction in degree of macrophage activation. Significant amounts of iNOS + macrophages take part in the immune milieu of both LL and JLD samples, displaying impaired microbicidal activity, like alternatively activated M2 cells.


Assuntos
Antígenos CD , 60579 , Imunofenotipagem , Hanseníase Virchowiana , Macrófagos , Humanos , Macrófagos/imunologia , Hanseníase Virchowiana/imunologia , Hanseníase Virchowiana/patologia , Masculino , Feminino , Citocinas/metabolismo , Antígenos de Diferenciação Mielomonocítica , Lobomicose/imunologia , Lobomicose/patologia , Pessoa de Meia-Idade , Adulto , Pele/patologia , Pele/imunologia , Idoso , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...